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1. Introduction

In recent years, significant attention has been drawn to the process of thermalization of

quantum fields. Quantitative description of the physics of the very early Universe and

of heavy-ion collision experiments requires an understanding of the real-time dynamics of

quantum fields at finite energy density, but out of equilibrium.

One very promising development is the application of the 2PI-formalism [1 – 3], which

allows the derivation and explicit numerical solution of a set of equations of motion for

the mean field and propagator in the full quantum theory. This is realized through the

truncation of a controlled diagram expansion in terms of 2PI diagrams. Already at next-

to-leading order (NLO) in either a coupling or 1/N expansion, interacting systems exhibit

equilibration, effective dissipation and thermalisation to the quantum equilibrium state [2,

4 – 9].
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The physics of the early Universe is described not in a static background, but in

expanding space. This is often approximated by a homogeneous, flat Friedmann-Robertson-

Walker (FRW) space-time, parametrized by the scale factor a(t) of the metric ds2 = dt2 −

a2(t)dx2. In some cases, expansion can be neglected when the time scale of a phenomenon

is very short on the time scale of expansion. But in general, and of course in principle,

expansion should be included in the description of early Universe physics.

Many processes at high temperature or energy density are well described by the clas-

sical approximation, where a Monte-Carlo sample of initial field configurations are evolved

using Hamiltonian equations of motion (see [10] for a brief review). The observables of

interest are then averages over this classical ensemble. The approximation must however

break down eventually, as classical fields equilibrate to a classical equilibrium, which suffers

from the Rayleigh-Jeans problem: in the continuum temperature will go to zero, and on

the lattice it will be cut-off dependent.

In this paper, we set out the 2PI formalism in a FRW space-time, and solve the

resulting equations numerically for some example applications. A number of studies have

been carried out in this context in the Hartree approximation [11 – 15] (which is also leading

order (LO) in a 2PI coupling expansion), and even before that, the formalism was set out

in [16, 17]. Recently, attempts have been made to partly include the effect of an expanding

background for specific applications also at NLO [18 – 20].

Two main issues present themselves. Firstly, as we are discretizing the system on a

finite co-moving lattice, there is only a finite number of momentum modes available, and as

the lattice expands in time these will be redshifted towards the IR in physical units. This

means that the physical cut-off changes in time. Therefore, there is a limit on how many

e-folds one can run the simulation before running out of “dynamical range”. In practice,

this means that at some point discretization errors become important, and results can no

longer be relied upon. As a result, reliably simulating cosmological inflation proper is a

daunting task, as the Universe expands many e-folds. Still, most of the inflationary stage

is often well described by semi-analytical tools and the slow-roll approximation, and only

the couple of e-folds around the end of inflation, reheating and the transition to radiation

domination requires numerical treatment. Post-inflationary phenomena typically only span

a few e-folds.

Secondly, since we are doing quantum physics, the theory has to be renormalized. In

particular, the energy density which enters in the semi-classical Friedmann equation (see

below) needs appropriate counterterms. Fortunately, features of the 2PI formalism include

that it is renormalizable at any level of diagram truncation [21 – 25], and that there is a

similarly truncated energy density which is conserved. Hence by introducing (scale-factor

dependent) counterterms for the energy density, mass and couplings, we can in principle

cancel all divergences, and construct a well-behaved Friedmann equation.

We study a self-interacting real scalar, and go to NLO (O(λ2)) in a 2PI coupling

expansion. By showing how to apply the procedure in practice, we expect it will be clear

how to generalize to more complicated systems. In the conclusions we point out some

issues, applications and ways of refining the approach.
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1.1 Setup

We are concerned with a single scalar field with ϕ4 interaction. The action is

S =

∫

dt d3x a3(t)

[

1

2
(∂tϕ)2 −

1

2a2(t)
(∂xϕ)2 −

1

2
m2ϕ2 −

λ

24
ϕ4

]

, (1.1)

written in terms of co-moving spatial coordinates x. a(t) is the scale factor, and we assume

a(0) = 1. Correspondingly, we will consider co-moving and physical momenta, denoted k

and k̃ = k/a(t), respectively.

The evolution of the scale factor is in turn given by the Friedmann equation in terms

of the Hubble rate H1,

H2(t) =
1

3M2
pl

〈T 00(t)〉ren, H(t) =
ȧ(t)

a(t)
. (1.2)

Here we equate a classical quantity on the left-hand side to a quantum expectation value

on the right-hand side. This only makes sense when the energy density is appropriately

renormalized, an issue we will return to below.

The system can be recast in comoving (conformal) time η, with dt = a(η)dη and we

can rescale the field2 ϕ(x) = φ(x)/a(η), in which case the action becomes

S =

∫

dη d3x

[

1

2
(∂ηφ −Hφ)2 −

1

2
(∂xφ)2 −

1

2
a2(η)m2φ2 −

λ

24
φ4

]

. (1.3)

We have introduced a new “comoving Hubble rate”, H = a′/a = aH. In terms of the

canonical momentum π = ∂ηφ −Hφ, the corresponding Friedmann equation is 3

(a′)2

a4
=

1

3a4M2
pl

〈

[

1

2
π2 +

1

2
(∂xφ)2 +

1

2
a2(η)m2φ2 +

λ

24
φ4

]

〉. (1.4)

In passing, it is useful to recall the classical equation of motion
[

∂2
η − ∂2

x −
a′′

a
+ a2m2 +

λ

6
φ2(x)

]

φ(x) = 0. (1.5)

The classical approximation amounts to generating a set of random initial conditions, solve

for the evolution using (1.5) together with the Friedmann equation and then to average

observables over initial conditions. In addition to using approximate dynamics, also the

classical averaging procedure is different from (1.4) in that the Hubble rate, and hence a(t),

is derived from each individual initial condition rather than the average energy density.

This could be resolved by simulating all initial conditions simultaneously using a common

a(t) determined through the ensemble averaged energy density. Still, it would be a classical

average rather than a quantum one.

1We use ȧ to denote ∂ta(t). a′ will denote ∂ηa(η), with η conformal time.
2The equations of motion will be solved in terms of the “conformal” field φ(η), but results converted

back to the “physical” field ϕ(t).
3The right-hand side is not the Hamiltonian corresponding to the action (1.3), but the Hamiltonian

of (1.1), written in terms of the rescaled fields.
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2. The 2PI formalism

2.1 Equations of motion at O(λ2)

We will not review the 2PI formalism in detail here, but refer to literature on the subject

(for instance [26] and references therein). Applying the 2PI formalism to the action (1.1),

while treating the scale factor a(t) as an external field, we find the equations of motion for

the homogeneous mean field φ̄(η) = 〈φ(x)〉 and the propagator4

〈Tφ(x)φ(y)〉 − φ̄(η)φ̄(η′) = F (η, η′,x − y) −
i

2
ρ(η, η′,x − y) signC(η − η′), (2.1)

where F and ρ are real.

The general form is

[

∂2
η + M2

φ(η)
]

φ̄(η) = −

∫ η

0
dη′
∫

d3xΣφ(η, η′,x)φ̄(η′), (2.2)

[

∂2
η + k2 + M2(η)

]

F (η, η′,k) = −

∫ η

0
dη′′Σρ(η, η′′,k)F (η′′, η′,k)

+

∫ η′

0
dη′′ΣF (η, η′′,k)ρ(η′′, η′,k), (2.3)

[

∂2
η + k2 + M2(η)

]

ρ(η, η′,k) = −

∫ η

η′

dη′′Σρ(η, η′′,k)ρ(η′′, η′,k). (2.4)

These are known as the Kadanoff-Baym [27] or real-time Schwinger-Dyson equations. They

include a set of self-energies M2
φ , M2, Σφ, ΣF , Σρ, to be calculated and integrated up with

the correlators for all past time. This makes 2PI simulations numerically challenging,

although one should remember that 2PI simulations do not require statistical averaging,

since the variables F , ρ, φ̄ are already the full correlators.

Throughout, we use Fourier transforms in comoving coordinates and assume homo-

geneity, so that5

〈φ(η,x)φ(η′,y)〉 =

∫

k

〈φk(η)φ−k(η′)〉eik(x−y). (2.5)

In the 2PI formalism, the self-energies are determined from truncations of a (2PI-)

diagram expansion. At NLO in a coupling expansion [2, 8],

M2
φ(η) = −

a′′(η)

a(η)
+ a2(η)m2 +

λ

6

(

φ̄2(η) + 3F (η, η,x = 0)
)

, (2.6)

M2(η) = −
a′′(η)

a(η)
+ a2(η)m2 +

λ

2

(

φ̄2(η) + F (η, η,x = 0)
)

, (2.7)

ΣF (η, η′,x) = −
λ2

2
φ̄(η)

(

F 2(η, η′,x) −
1

4
ρ2(η, η′,x)

)

φ̄(η′)

−
λ2

6
F (η, η′,x)

(

F 2(η, η′,x) −
3

4
ρ2(η, η′,x)

)

, (2.8)

4The fields are defined along the Keldysh contour C.
5We use a unifying notation for momentum integrals in the continuum

R

k
=

R

d3
k

(2π)3
and on the lattice

R

k
= 1

V

P

k
.
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Σρ(η, η′,x) = −
λ2

2
φ̄(η)2F (η, η′ ,x)ρ(η, η′,x)φ̄(η′)

−
λ2

6
ρ(η, η′,x)

(

3F 2(η, η′,x) −
1

4
ρ2(η, η′,x)

)

, (2.9)

Σφ(η, η′,x) = −
λ2

6
ρ(η, η′,x)

(

3F 2(η, η′,x) −
1

4
ρ2(η, η′,x)

)

. (2.10)

The only difference to the Minkowski-space equations is in the a(η)-dependence of the

effective masses. This is the standard free-field dependence, also appearing in the classical

equation of motion (1.5). Note however that the time coordinate is the conformal one and

that we still consider the rescaled field φ. Physical time is therefore

t − t0 =

∫ η

η0

a(η)dη, (2.11)

and the physical correlators are

〈ϕ(x)〉 = ϕ̄(x) =
1

a(η)
φ̄(x), (2.12)

〈Tϕ(x)ϕ(y)〉 =
1

a2(η)
〈Tφ(x)φ(y)〉, (2.13)

〈T∂tϕ(x)∂tϕ(y)〉 =
1

a4(η)
〈T [(∂η −H) φ(x)][(∂η −H)φ(y)]〉. (2.14)

For m = 0 and with non-minimally “conformal” coupling to curvature (an additional term
1
6ϕ2R in the action), no trace remains of the expansion in the equation of motion, and

physical processes proceed exactly as in Minkowski space, except that the time coordinate

is “stretched” through (2.11). We use minimal coupling to gravity and non-zero mass,

leading to deviations from conformal behaviour.

3. Renormalization

Renormalization in an expanding space-time requires additional counterterms compared to

the Minkowski case, as operators involving the metric (in this case, the scale factor a(t))

emerge in the effective action. We will adopt the approach of [28], where the energy den-

sity is renormalized by subtracting a contribution corresponding to the adiabatic vacuum

solution in the background defined by a(t). This vacuum solution can be solved for order

by order6 in derivatives of a(t) using a WKB-type ansatz: at leading order (ȧ0) all quartic

divergences are canceled, at the next order (ȧ2) also quadratic divergences and finally at

order ȧ4 the logarithmic divergences.

In Minkowski space, a full-fledged 2PI renormalization procedure has been devel-

oped [21 – 25], which allows a proper continuum limit to be taken. Since we are not intend-

ing to go to the continuum, we here take a somewhat simpler approach, and renormalize

the equations of motion and the energy density in the LO (Hartree) approximation by a

6For brevity, we write ȧn to mean all combinations of n time derivatives. For n = 2 we have terms and

ȧ2 and ä, etc. Similarly O(H2) includes O(Ḣ).

– 5 –
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mass and energy counterterm only [8]. The mass counterterm is calculated using the same

WKB vacuum solution as for the energy density. From a numerical viewpoint, logarithmic

divergences are very small indeed, and so we restrict ourselves to renormalizing the energy

density to this level of precision, i.e. expanding the WKB solution only to second order in

ȧ.

3.1 Counterterms

The energy density is, in the 2PI-LO approximation (F̃ is the correlator for the original ϕ

field)

〈T 00(t)〉ren =

[

1

2
(∂tϕ̄)2 +

1

2
∂t∂t′ F̃ (t, t′,0)t=t′ (3.1)

1

2a2(t)
∂x∂x′F̃ (t, t,x − x′)x=x′ +

1

2
m2

b

(

ϕ̄2(t) + F̃ (t, t,x = 0)
)

+
λ

24

(

ϕ̄4(t) + 6ϕ̄2(t)F̃ (t, t,x = 0) + 3F̃ 2(t, t,x = 0)
)

− δT 00

]

.

We have introduced a bare mass mb(t) and an energy counterterm δT 00(t) to be determined.

These are time dependent, but only through a(t). The energy can be written in a more

suggestive form as

〈T 00(t)〉ren =

[

1

2
(∂tϕ̄)2 +

1

2

(

m2
b +

λ

2
F̃ (t, t,x = 0)

)

ϕ̄2(t) +
λ

24
ϕ̄4(t) +

∫

k

1

2

(

∂t∂t′F̃ (t, t′,k)t=t′ +

(

k2

a2(t)
+ m2

b +
λ

2
F̃ (t, t,x = 0) +

λ

2
ϕ̄2(0)

)

F̃ (t, t,k)

)

−
λ

4
ϕ̄2

0F̃ (t, t,x = 0) −
λ

8
F̃ 2(t, t,x = 0) − δT 00(t)

]

. (3.2)

where ϕ̄0 = 〈ϕ(t = 0)〉. The LO equations of motion read

[

∂2
t + 3H(t)∂t + ω̃2

k(t) −
λ

3
ϕ̄2(t)

]

ϕ̄(t) = 0, (3.3)

[

∂2
t + 3H(t)∂t + ω̃2

k(t)
]

F̃ (t, t,k) = 0, (3.4)

with

ω̃2
k(t) = k2/a2(t) + m2

b +
λ

2
F̃ (t, t,x = 0) +

λ

2
ϕ̄2(t). (3.5)

We will renormalize in a vacuum to be determined below. Assuming we have such a

vacuum, let us define

m2
b = m2 −

λ

2
δF̃vac(t, t,x = 0), (3.6)

where δF̃vac is a WKB approximation to the exact, time-dependent, vacuum solution

F̃vac(t, t,x = 0).

– 6 –
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Similarly, let us define

δT 00 = δT 00
free + δT 00

int, (3.7)

δT 00
free =

∫

k

1

2
∂t∂t′δF̃vac(t, t

′,k)t=t′ +
1

2

(

k2

a2(t)
+ m2 +

λ

2
ϕ̄2(0)

)

δF̃vac(t, t,k) (3.8)

δT 00
int = −

λ

4
ϕ̄2

0δF̃vac(t, t,x = 0) −
λ

8
δF̃ 2

vac(t, t,x = 0). (3.9)

We will be interested in evolving various, non-vacuum, initial conditions in real time,

giving rise to some evolution of a(t). In principle, we could then also solve the vacuum equa-

tion numerically, simultaneously in the background of that same a(t), and self-consistently

use the resulting F̃vac for the counterterms of the non-vacuum simulation.

Because the vacuum solution depends only on a(t) and its time derivatives, and because

the renormalised LO equations of motion in vacuum are similar to the free ones (insert (3.6)

into (3.5 into 3.4)), we will instead solve a WKB equation for the field modes. In this

way, the counterterms will simply be functions of a(t), to be calculated at each time

t. By including subsequent orders in WKB, we will be able to get a better and better

approximation to F̃vac.

3.2 Choosing the vacuum

Following [28], we have for the original, un-rescaled field ϕ a WKB ansatz

ϕk(t) = akfk(t) + a†kf∗
k(t), fk(t) =

1
√

2 a3(t)Ωk(t)
e−i

R t Ωk(t′)dt′ . (3.10)

which is meant to satisfy the equation of motion for the free field modes ϕk(t)

[

∂2
t + 3H(t)∂t + ω̃2

k(t)
]

ϕk(t) = 0, (3.11)

with

ω̃2
k(t) = k2/a2(t) + M2, M2 = m2 +

λ

2
ϕ̄2(0). (3.12)

As mentioned, we include the possibility of having a non-zero initial mean field ϕ̄(0),

in which case we include the initial value in the mass. As is argued in the appendix,

divergences associated with a time-dependent mass (and in this case, a varying mean field)

are logarithmic, and so beyond the level of approximation aimed at here.

Ωk has to satisfy

Ω2
k = ω̃2

k −
3

2
Ḣ −

9

4
H2 −

1

2

Ω̈k

Ωk

+
3

4

(

Ω̇k

Ωk

)2

. (3.13)

At leading order in WKB, Ωk = ω̃k. By plugging this back into (3.13) we get the next

order,

(aΩ̄k)2 = (aω̃k)2

(

1 −
a′′/a

(aω̃k)2

(

1 +
1

2

(

aM

aω̃k

)2
)

−
H2

(aω̃k)2

(

1

2

(

aM

aω̃k

)2

−
5

4

(

aM

aω̃k

)4
))

.

(3.14)

– 7 –
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where we have defined H = aH = a′/a. Ω̄k defines our approximation to the (infinite order

in WKB) vacuum. We define

δF̃vac(t, t
′,x = 0) =

∫

k

〈ϕ†
k(t)ϕk(t′)〉. (3.15)

Using

ḟk(t) =

(

−iΩk −
3

2
H −

1

2

Ω̇k

Ωk

)

fk(t), (3.16)

we have to this order and second order in H

δT 00
free =

1

2a4

∫

k

aω̃k

(

1 +
H2

2(aω̃k)2

(

1 +

(

m

ω̃k

)2

+
1

4

(

m

ω̃k

)4
))

. (3.17)

We also have

δF̃vac(t, t,x = 0) =

∫

k

1

a2

1

2aΩ̄k

, (3.18)

determining the bare mass (3.6) and δT 00
int (3.9).

With m2
b , δT 00

free and δT 00
int as defined above, the renormalized energy density has di-

vergences ∝ C(t) ln Λ in Minkowski space, where C(t) is a function of mass dimension four

of the effective time-dependent mass and its time derivatives. In FRW space, C(t) can

also depend on (time-derivatives of) H. In particular, in this approach the finite parts of

the counterterms are chosen to cancel the 1-loop corrections to O(H2), and so effectively

amount to the renormalization conditions, in terms of some momentum cut-off Λ,

〈T 00〉ren = 0 + O(C(0) ln Λ), (initially in vacuum, LO), (3.19)

m2
ren = m2 + O(C(0) ln Λ), (initially in vacuum, LO). (3.20)

Using the WKB solution with Ω̄k as an initial state, 〈T 00〉ren is identically zero for zero

mean field, or initially equal to the ”tree-level” energy density for a non-zero mean field

〈T 00(0)〉ren =

[

1

2
(∂tϕ̄)2(0) +

1

2
m2ϕ̄2(0) +

λ

24
ϕ̄4(0)

]

. (3.21)

In the simulations carried out here, H/ω̃k ≃ 1/200, making the O(H4) corrections very

small indeed. Specifically including a non-zero cosmological constant is straightforward,

but we will not do so here.

Renormalization at NLO in 2PI in Minkowski space involves real-time solution of

separate auxiliary equations and counterterms for each included diagram. This is because

the 2PI diagrams resum self-insertions to all orders, and so the structure of divergences

becomes more involved. Generalization to expanding backgrounds becomes even more

complicated and is beyond the scope of this paper. We will simply note that although

formally quadratically divergent, vacuum corrections to the mass from the Sunset diagram

are numerically more than an order of magnitude smaller than the LO contribution, also

– 8 –
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at the largest coupling used below, λ = 6 [8]. At larger coupling this may no longer be the

case, but then the coupling expansion should presumably be discarded altogether. Similar

arguments apply to the vacuum contribution to the energy density.

This concludes our treatment of renormalization. Obvious refinements are possible,

in particular if one is interested in subtle issues like particle creation from the vacuum,

thermal (or warm) inflation. But for our present purposes, this will suffice.

3.3 Initial conditions

We are interested in two types of initial conditions. The initial correlators are chosen

gaussian, of the form

〈ϕ†
kϕk〉 =

nin
k + 1/2

Ωin
k

, 〈∂tϕ
†
k∂tϕk〉 =

(

nin
k + 1/2

)

D1(H)Ωin
k , (3.22)

〈
[

∂tϕ
†
k, ϕk

]

〉 = i, 〈
{

∂tϕ
†
k, ϕk

}

〉 = D2(H), (3.23)

in terms of a dispersion relation

Ωin
k = Ω̄k (M → Mgap) , (3.24)

and a particle number in (approximate) equilibrium

nin
k =

(

e
ωin
k

T − 1

)−1

, Finite T, ωin
k =

√

k̃2 + M2
gap, (3.25)

and out of equilibrium

nin
k = c, |k̃| < c, nin

k = 0, |k̃| > c, Step. (3.26)

T, c are free to be chosen. T = 0 is the vacuum. The expansion is encoded in Ω̄k and the

correction factors

D1(H) = 1 +
H2

(ωin
k )2

(

1 +

(

Mgap

ωin
k

)2

+
1

4

(

Mgap

ωin
k

)4
)

, (3.27)

D2(H) = −
H

ωin
k

(

1 +
1

2

(

Mgap

ωin
k

)2
)

.

M2
gap is found by solving the 1-loop gap equation for the relevant initial condition,

M2
gap = m2

b +
λ

2

(

φ2(0) + F0

)

, F0 =

∫

k

nin
k + 1/2

Ωin
k

. (3.28)

The “Step” represents some generic out-of-equilibrium initial state, which is vacuum for

large k. More elaborate choices are of course possible. “Finite T” is strictly speaking only

equilibrium in the Hartree approximation at H = 0 and at the initial time.
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3.4 Observables

We monitor the global quantities physical time (2.11), scale factor a(t), the Hubble rate,

the mean field φ̄(t)/Mpl, renormalized local correlator

F̃ren(t, t,x = 0) = F̃ (t, t,x = 0) − δF̃vac(t, t,x = 0), (3.29)

and renormalized energy density 〈T 00(t)〉ren.

3.4.1 Particle numbers

For consistency with the renormalization and initialization prescriptions above, we should

define particle number relative to the vacuum defined by Ω̄k (3.14), to the same order in

H. We use

a3(t)ñvac
k (t) = a3(t)

(

1

2Ω̄k(t)
〈ϕ̇k(t)ϕ̇k(t)〉vac +

Ω̄k(t)

2
〈ϕk(t)ϕk(t)〉vac

)

−
1

2
. (3.30)

By inserting Ω̄k, we find

a3(t)ñvac
k (t) =

H2

4(aω̃k)2

(

1 +

(

aM

aω̃k

)2

+
1

4

(

aM

aω̃k

)4
)

+ O
(

ȧ4
)

. (3.31)

As expected this is zero in Minkowski space. The particle number relative to our vacuum

is therefore

a3(t)ñk(t) = a3(t)

(

1

2Ω̄k(t)
〈ϕ̇k(t)ϕ̇k(t)〉 +

Ω̄k(t)

2
〈ϕk(t)ϕk(t)〉

)

−
1

2
− a3(t)ñvac

k (t). (3.32)

Out of equilibrium, it is advantageous to use instead the “self-consistent” definitions [29,

30, 8]

a3(t)nk(t) = a3(t)
√

〈ϕ̇k(t)ϕ̇k(t)〉〈ϕk(t)ϕk(t)〉 −
1

2
− a3(t)ñvac

k (t), (3.33)

ωeff
k =

√

〈ϕ̇k(t)ϕ̇k(t)〉/〈ϕk(t)ϕk(t)〉. (3.34)

Way out of equilibrium, ωeff
k will look wild, but close enough to equilibrium the two def-

initions agree in Minkowski space. With expansion it is easy to see that in our vacuum

ñk(t) = nk(t) + O
(

ȧ4
)

, and that

ωeff
k = Ω̄k

(

1 +
H2

2(aω̃k)2

(

1 +
(aM)2

(aω̃k)2
+

1

4

(aM)4

(aω̃k)4

))

. (3.35)

In practice, the two definitions of nk(t) were seen to agree.

In the context of thermalisation, we quote the effective temperature and chemical po-

tential of a mode, based on assuming a Bose-Einstein thermal distribution asymptotically7,

a3(t)nk =

(

exp

(

ωeff
k − µeff

ch

T eff
k

)

− 1

)−1

→ ln

(

1

a3(t)nk

+ 1

)

=
ωeff

k − µeff
ch

T eff
k

. (3.36)

7We note that a3(t)nk rather than nk(t) itself is the quantity that is expected to equilibrate to a Bose-

Einstein distribution, as a result of defining Fourier transforms in terms of co-moving k.
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When T eff
k and µeff

ch are independent of k, we say that the system has equilibrated kinetically.

In Minkowski space the timescale for this to happen for λ = 6 (as used throughout most

of this paper) is ≃ 1000m−1 [8]. Chemical equilibration is when this common µeff
ch is

zero. Again in Minkowksi space, this is roughly an order of magnitude slower than kinetic

equilibration.

4. Example applications

The setup introduced above can now be applied to systems and phenomena of interest.

We use lattices of 323 points, time-steps δt = 0.05, lattice spacing δx = 1. The masses

are m/Mpl = 0 (massless) m/Mpl = 0.00025 − 0.001 (massive), and for the interacting

case λ = 6 to study thermalisation, λ = 0.1 for the case of preheating. Thermal initial

conditions have T/Mpl = 0.0005−0.002 and out-of-equilibrium Step initial conditions have

c/m = 5. We use Mpl to set the scale of gravity and hence the expansion rate. Large Mpl

means slower expansion. When a(t)m ≃ 1, one should start worrying whether the lattice

is too coarse. When a(t)m > 2, results can probably no longer be trusted. In the massive

case, a(0)m = 0.2.

From the point of view of a realistic cosmology, at least after inflation our choice of

relative Mpl is much too small, and our coupling too large. In m2ϕ2 inflation m/Mpl <

10−5 and in λϕ4 inflation λ ≃ 10−14, to be consistent with measurements of the Cosmic

Microwave Background. Typical reheating temperatures are or the order of 10−8Mpl.

Therefore the parameters here over-emphasize expansion effects compared to most post-

inflationary cosmological phenomena. Inflation itself is an exception, since the relatively

much larger couplings used here (in the preheating application, 0.1 instead of 10−14) may

make larger interaction rates compensate for the larger expansion.

It may also be worth pointing out that as H < 10−3 (see below), all the modes under

consideration are sub-horizon,

kmin ≃ 0.2/a(t) ≫ H, (4.1)

since we only allow a(t) < 10.

4.1 Free field at finite temperature

The simplest case is a free field initially in the vacuum. But since we have effectively

chosen zero cosmological constant as our renormalization condition, the Universe is just

static. Still, it is a useful test of the numerics and the renormalization.

A slightly more interesting test case is to initialize a free field in a thermal state, λ = 0,

T/Mpl = 0.04, m/Mpl = 0.02; 0, shown in figure 1. The effect of the expansion is to redshift

the momenta kphys(t) = k̃ = k/a(t), but the particle number as a function of co-moving

momentum a3nk(t) is constant. If the field is massless, we have

a3nk(t) = f (ωk/T ) = f (|k|/T ) , (4.2)

with in our case f(x) = (exp(x) − 1)−1. If we identify the constant T as the temperature,

then f(|k|/T ) is constant if T (t) = T (0)/a(t). Hence for the massless case, T eff
k (3.36)
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Figure 1: The effective temperatures T eff
k

for all modes k in a free simulation starting from

equilibrium. In the massles case (black), the modes stay thermal with a temperature dropping as

1/a. In the massive case (red) this is only true in the UV. The range of physical momenta redshift

towards the IR. Overlaid are (dashed) lines denoting T (t = 0)/a(t) in the two cases.

should be independent of k and decrease as 1/a. These are the black lines of figure 1. In

the massive case, we no longer have (4.2), since ω̃k =
√

m2 + |k|2/a2. For |k| ≫ m the

argument still holds, but for small |k| we have deviation from |k|-independence. This is

shown by red lines. We may choose to interpret the deviation as a chemical potential, and

it is easy to see8 that for |k| ≪ m, T ∝ 1/a2(t) and µeff
ch/m = 1 − 1/a2(t). We stress that

at this point the chemical potential is only meant to express a relative over-abundance of

particles in the low momentum modes.

As a consequence of redshift only, we therefore expect that a non-interacting massive

field will have an effective chemical potential going asymptotically to µeff
ch /m = 1. When

including interactions, these will drive the chemical potential towards zero, but only if they

are fast enough on the time-scale of the expansion.

We can trust the simulation as long as the high |k| modes stay in the vacuum, with no

significant thermal population. This is automatic in the free field case, but when including

interactions, high |k| modes will be excited.

4.2 Free mean field and vacuum modes

Another interesting check of the numerics is to initialize the mean field away from zero

and let it oscillate freely, without interacting with the modes. These are initialized in the

vacuum. It is easy to see that an oscillating, homogeneous mean field behaves as matter,

with zero pressure, 〈T 00〉ren ∝ a−3 and a(t) ∝ t2/3. Also, the mean field is expected to

8Use that ω̃k ≃ m + k2/(2a2m). Then for [ω̃k − µeff
ch (t)]/T (t) to be constant, µeff

ch (t) = m(1 − 1/a2(t)).
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Figure 2: The scale factor (upper left), mean field (lower left), renormalized correlator and energy

density (right) in the presence of an oscillating mean field. Both correlator and energy density

are well renormalized, and the energy density behaves as matter, ∝ a−3. The scale factor evolves

as matter domination a = (1 + t/t0)
2/3 (overlaid), and the mean field amplitude decreases as 1/t

(overlaid).

have the form

φ̄(t) =
φ0

1 + t/t0
cos(mt). (4.3)

This supposes that the vacuum has been correctly renormalized and does not contribute

to the energy density. In principle, fast expansion could induce particle production (an

O(H4) effect), but this will be very small indeed.

In figure 2 we show the scale factor (upper left), the mean field (bottom left) and the

renormalized energy density (bottom right). They all scale with a(t) as expected. In the

top right frame, we show the renormalized energy density after the mean field contribution

is subtracted, and the renormalized equal time correlator. Both are renormalized to 10−5

(here in units where the un-renormalized quantity is O(1)).

4.3 Interacting field at finite temperature

Interactions alter the dynamics and the thermal state is only approximately Bose-Einstein,

with an additional thermal mass component. A fair approximation to an initial thermal

state is to solve for the thermal mass at LO, and use this to generate a Bose-Einstein

distribution (3.25). Because we evolve with NLO equations of motion, the initial condition

is not exactly the equilibrium one. Also, since we include expansion, the system can
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Figure 3: Left: The mode spectrum in time, starting from a thermal initial condition. The ob-

servable is chosen so that it is a straight line in kinetic equilibrium (3.36), and effective temperature

and chemical potentials can be found from a fit (overlaid). Right: Effective temperature and chem-

ical potential for a fast (T init/Mpl = 0.008), slow (T init/Mpl = 0.002) and very slow expansion

(T init/Mpl = 0.0005). The temperature drops as matter domination, and the chemical potential

becomes larger for faster expansion, when interactions have a harder time keeping up. Dashed lines

represent the free field behaviour µch/m = 1 − 1/a2(t).

anyway only be in approximate equilibrium. We use λ = 6, Tinit/Mpl = 0.0005, 0.002, 0.008,

Tinit/m = 2.

Figure 3 (left) shows ln(1/nk + 1) (3.36) in time. We see that interactions partially

compensate for the chemical potential µch/m = 1− 1/a2(t), although kinetic equilibration

is not complete. We may tentatively extract effective temperatures and chemical potentials

from fits to the spectrum, shown in the right-hand panel. In all cases, temperature drops

roughly as matter domination. As for the non-interacting case, the chemical potential rises

and goes asymptotically to a finite value. Clearly, interactions are not fast enough to uphold

or restore chemical equilibrium. In the fast expansion case, although the rise is slower than

m(1 − 1/a2(t)) (the initial mass is not the zero-temperature one), asymptotically it goes

to m, suggesting that interactions are ineffective. In the slow case, the asymptotic value is

about 3/4 as large, as a result of interactions. In the very slow case, a slight decrease can

be seen at late times. Still, in all cases, a relic abundance of particles freezes in.

A common criterion for staying thermal is for some interaction rate Γ to dominate the

Hubble rate. Such a rate could be provided by the Sunset diagram damping rate [31]. At

large temperature T ≫ m9,

Γ(T, λ) ≃
λ3/2T

50π2
. (4.4)

The Hubble rate is given in terms of the energy density

H2 =
1

3M2
pl

π2

30
T 4, (4.5)

9We note that our system is probably not in this asymptotic regime, and not at small coupling, and so a

more complicated expression may be required for detailed estimates. For an order of magnitude estimate,

however, this will do (see also [8]).
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Figure 4: The spectrum a3nk vs. k when starting from a Step initial condition. Again, left is

for T init/Mpl = 0.002, right for T init/Mpl = 0.008. Kinetic equilibration happens on timescales of

order mt = 200 in both cases. The resulting temperature is clearly smaller for fast expansion.

and so with our parameters

Γ

H
≃ 0.09

Mpl

T
≫ 1, (4.6)

suggesting that the system should be able to stay thermal. Even more so as temperature

drops, although when m ≃ T (4.6) no longer applies. The “scattering time scale” Γ−1

is mtscat. ≃ M
15T ≃ 17. Chemical equilibration is known to require of order 500 tscat. at

this coupling in Minkowski space [8]. Therefore Γ/H ≫ 1 is not sufficient for chemical

equilibration, although as we will see below, kinetic equilibration does take place.

The 2PI-resummed Sunset diagram includes 2-to-2 scattering as well as off-shell 1-to-3

scattering. The damping rate (4.4) is dominated by the former, which leads to kinetic but

not chemical equilibration, as particle number is conserved. The latter off-shell process does

change particle number, but is a higher order effect included in the diagram through the

2PI resummation of many perturbative diagrams. It is therefore no surprise that chemical

equilibration happens on a much longer timescale, being (naively) suppressed by additional

powers of the coupling. This highlights the possible shortcomings of criteria like (4.6) to

establish thermalization.

4.4 Thermalisation with expansion

In order to study kinetic equilibration, and its dependence on expansion rate, we start the

system way out of equilibrium using the Step initial condition. Figure 4 shows the evolution

of the spectrum at early times, for a slow expansion (m/Mpl = 0.001, left) and a fast one

(m/Mpl = 0.004, right). The Step is smeared out into a smooth spectrum on a timescale

of mt ≃ 200, while the modes are redshifted towards the infrared. In this particular case,

redshift may help equilibration, as evolution from the Step to equilibrium involves transfer

of power to smaller |k| modes. For even faster expansion, this redshift may “overtake” the

equilibrium distribution, and intermediate-|k| modes will have to be re-populated through

scattering.
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Figure 5: Effective chemical potentials (left) and temperatures (right) in time for different expan-

sion rates. Only after some time are the spectra sufficiently straight to allow fits to determine T eff

and µeff
ch . The asymptotic chemical potential increases with increasing expansion rate, interactions

become more inefficient and more particles freeze in. Final temperature decreases with expansion

rate as a power law, t−(0.4−0.8).

Once the spectrum is kinetically equilibrated, evolution is much slower, and we can

again quantify the spectrum by the effective temperature and chemical potential. This is

shown in figure 5, with the T eff on the left and the µeff
chem on the right. Temperature drops

as t−α with α between 0.4 and 0.8, while the chemical potential again asymptotes to a

finite value. Faster expansion (smaller Mpl) again results in a larger asymptotic value.

We are therefore in a regime where interactions are strong enough to equilibrate an

initial out-of-equilibrium condition into a Bose-Einstein-like thermal state, but not strong

enough to get rid of the chemical potential. As in the section above, we conclude that the

Γ/H ≫ 1 criterion applies to restoration and/or maintaining of kinetic equilibrium only.

4.5 Preheating after inflation

At the end of cosmological inflation, the inflaton mean field leaves the slow-rolling stage

and begins oscillating around a minimum of its potential. Through interaction with other

fields and/or its own field modes, energy is transferred into particle excitations of these

fields. In some cases, resonant particle creation can take place, known as preheating [32].

This usually lasts for a few periods of the inflaton oscillation, during which some fraction

of the energy is transferred, after which normal perturbative decay and reheating transfers

the rest.

Let us assume for simplicity that the mean field oscillates harmonically as (4.3), includ-

ing the self-interaction (which induces an-harmonic oscillations) only through an altered

frequency mosc

φ̄(t) = φ0(t) cos(mosct). (4.7)

Then each mode function ϕk(t) obeys approximately

ϕ̈k + 3H(t)ϕ̇k +

(

k2

a2(t)
+ m2 +

λ

2
φ2

0(t) cos2(mosct)

)

ϕk = 0. (4.8)
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Figure 6: An oscillating mean field coupled to its modes results in reheating and possibly resonant

preheating. Shown is the mean field (upper) and the energy components (lower) for three cases:

Large field, slow expansion (left); large field, fast expansion (middle), small field, slow expansion

(right). For the first case, around mt = 100 the mean field dumps all its energy into particles

through resonant preheating.

Again approximately, a mode k will be in resonance if

Ak ≡
k2

a2(t)m2
osc

+
m2

m2
osc

+
λφ2

0(t)

8m2
osc

= l2, (4.9)

with l an integer, with the strongest resonance for Ak = 1. In the resonance, particle

number grows exponentially. Because a(t) and the amplitude φ0(t) decrease in time, in an

expanding background, modes will move in and out of resonance.

Figure 6, upper panels, shows the mean field for three different cases, normalized

to their initial amplitude: m/Mpl = 0.001, ϕ̄(0)/Mpl = 0.01 (black); m/Mpl = 0.004,

ϕ̄(0)/Mpl = 0.04 (red); and m/Mpl = 0.004, ϕ̄(0)/Mpl = 0.01 (red). Since energy density

is dominated by the mean field, the expansion rates are the same initially in the first and

second case, faster in the third. But Mpl is different in lattice units and in units of m

in the first case. Around time mt = 100 the mean field oscillation suddenly collapses for

the slow expansion, small m/Mpl, case only. In the lower panels, we see that at the same

time, energy is transferred from the mean field component (E(φ)) to the mode component

(E(G)) (normalised to the total energy). We conclude that we have preheating only in this

one case.
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Figure 7: Left: Particle numbers of the 5 lowest |k| modes. Only in the large field cases is there

a resonance, and only in the slowly expanding cases (black) is the resonance long enough to get

large particle numbers. With fast expansion (red) only the zero mode grows briefly. Right: Ak

for the zero modes (4.9), with the replacement φ̄0 → φ̄(t). Hence Ak proper is the envelope of the

oscillating curves.

Indeed, in figure 7 (left), we show particle numbers of the 5 lowest momentum modes;

these grow exponentially, with the first (zero) mode leading the way early on reaching

nk ≃ 10000. But also in the fast expanding case (red), the zero mode grows. In that case

the resonance ends rather early on, particle number is only order 100, and the non-zero

modes are not excited. In the right panel, Ak for the zero mode is the envelope of the

oscillating curves, shown for the three cases. The overall normalisation will depend on

mosc, and apparently the resonance band is somewhere above Ak = 1. The qualitative

picture is fairly clear. The blue curve is below the resonance, and no preheating occurs.

The (amplitude of the) black curve goes through the resonance band long enough for

a significant amplification of the zero mode. This eventually excites the non-zero, non-

resonating modes to complete reheating altogether. For faster expansion (red), the mean

field amplitude decays very fast, and apparently the zero mode is only briefly in resonance,

but does not grow sufficiently to trigger substantial preheating.

Clearly a more detailed study is required, for finer lattices where not only the zero mode

resonates, and taking into account that the mean field oscillation is anharmonic. Also, in

most realistic models of inflation, the mean field starts out O(Mpl). Finally, a realistic

(self-)coupling would be many orders of magnitude smaller than the one employed here,

λ = 0.1. Such a study is beyond the scope of the present work. Still, resonant preheating

is within the range of application of the present formalism, and outcomes depend strongly

on the expansion rate.

Parametric resonance was studied using 2PI methods in [33], in Minkowski space. Par-

ticle numbers grow exponentially to nk ≃ 1/λ, and so in principle a 2PI coupling expansion

like the one used here may not be applicable. Indeed, for small coupling, numerical insta-

bilities are experienced. In [33] a 1/N expansion in the number of fields is used, making

the dynamics more stable. Using the procedure outlined here, this can be generalized to

FRW spaces.
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5. Conclusion

We have seen that extending the 2PI formalism of out-of-equilibrium quantum fields to

expanding backgrounds amounts to introducing a time dependent mass m2 → a2m2−a′′/a

in the conformal time, rescaled field, equations of motion (10-19). Having solved these

equations on the lattice, observables are translated back to physical fields and physical

time. The scale factor is derived from the semi-classical Friedmann equation involving

the renormalized energy 〈T 00〉ren. We have here opted for an approximate renormalization

strategy, where counterterms for the mass and the energy density are calculated in the

LO/Hartree approximation in terms of a particular vacuum, the adiabatic free-field solution

to second order, both in WKB and in ȧ. We argued that going beyond this order is possible,

although only really necessary when aiming at taking the continuum limit or using very

large expansion rates. A fully 2PI renormalization beyond LO is much harder.

On a finite comoving lattice, modes are redshifted towards the IR. Therefore the num-

ber of e-folds of expansion available is limited; a simulation can only be trusted as long

as there is a range of UV modes that stay in the vacuum. Otherwise cut-off effects will

influence the physics and presumably the renormalization. One way of quantifying this is

for the time-dependent mass am to stay less than unity. In the “conformal” case m = 0

another mass scale (temperature, initial mean field) will play a similar role.

At the end of the day this is a practical question of computer capacity. 2PI simulation

are memory intensive in that the memory of past time-steps must be saved to generate the

self-energy kernels (right hand sides of (10-12)). On the other hand, no statistical averaging

is necessary as the solutions to the equation are the full correlators. The total simulations

performed here amount to about 5000 CPU hours.

Possible applications range over all the topics already studied in Minkowski space:

Thermalisation [2, 5 – 9], which enters in early Universe physics as well as heavy ion col-

lisions10; reheating and preheating, both the resonant variety [33] and tachyonic preheat-

ing [34, 35]. In the latter cases, it may be prudent to use a diagram expansion in 1/N

rather than λ, to be sure corrections are under control.

In the present paper we have made test-runs of many of these cases and pointed out

the main effects of the cosmological expansion. All of these applications deserve further

scrutiny, also of combined effects of smaller/larger couplings, expansion rate, temperature

and masses. A study of the inflationary regime was not attempted, mainly because it would

require very large lattices (lots of expansion) and/or m = 0 which is a very special case.

One interesting result is the difference between the kinetic and chemical equilibration

timescales, and the possibility of having one but not the other happen. Clearly, one must

be careful when assuming instantaneous thermalisation, as is sometimes done when consid-

ering reheating, preheating and phase transitions in the early Universe. Using a criterion

like Γ/H ≫ 1 to ensure instant thermalisation presumes careful consideration of which Γ

is the relevant one.

We were also able to confirm that the amount of resonant preheating depends sensi-

tively on the rate of expansion. This is because field modes are redhifted in and out of

10In heavy ion collisions the expansion is somewhat different from FRW.
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resonance bands. This shortens the resonance time, making even exponential growth much

less effective.

The quantum 2PI equations have a classical counterpart, i.e. 2PI-truncated equations

for classical correlators, reproducing classical dynamics [36]. The relation between the two

amounts to neglecting terms like ρ2 compared to terms like F 2 in the self-energies (14-

16), and ignoring renormalization. Although the full classical approximation is in principle

exact, it relies on statistical averaging over initial conditions. Classical 2PI has no statistical

errors, but diagram expansion truncation introduces a different type of approximation. As

such, it contributes an alternative way of doing classical simulations.

Extension to more complicated models than a single self-interacting scalar is straight-

forward. Possible applications include reheating and preheating with multiple fields (in-

cluding fermions [5]), departure from and return to equilibrium for systems with heavy

particles decaying into light ones. In the context of multi-field preheating this may allow

to calculate non-gaussian signatures in the CMB [37, 38].

In conclusions, we believe that given sufficient numerical capacity, and observing cer-

tain simple rules, the 2PI formalism for out-of-equilibrium fields provides a convenient tool

for quantitative calculations in cosmology.
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A. Structure of divergences

Here, we present a detailed exposition of the cancellation of divergences in the renormal-

ization procedure presented in the main text.

We begin in Minkowski space, at 2PI-LO. At this order, the equation of motion for

the propagator modes reads,
[

∂2
t + ω̃2

k(t)
]

F̃ (t, t,k) = 0, (A.1)

with

ω̃2
k(t) = k2 + m2

b +
λ

2
F̃ (t, t,x = 0) +

λ

2
ϕ̄2(t). (A.2)

Away from the vacuum, and for the moment neglecting time derivatives of the mass, write11

F̃ (t, t,x = 0) = Fvac + Fres(t) =

∫

k

nk(t) + 1/2

ω̃2
k(t)

. (A.3)

11Note that although we have an interacting theory, at 2PI-LO the field can still be written in terms

of mode functions, and are therefore completely described in terms of a particle number and a dispersion

relation with an effective time-dependent mass.
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In our prescription, we choose

Fvac =

∫

k

1/2
√

k2 + m2 + λ
2 ϕ̄2

0

, (A.4)

and renormalize the mass by

m2
b +

λ

2
Fvac = m2. (A.5)

We will also need

F0 =

∫

k

1

2

√

k2 + m2 +
λ

2
ϕ̄2

0. (A.6)

Then

ω̃2
k(t) = k2 + m2 +

λ

2
Fres(t) +

λ

2
ϕ̄2(t). (A.7)

The energy density can be written

〈T 00(t)〉ren =
1

2

∫

k

(

∂t∂t′ + ω̃2
k(t)

)

F̃ (t, t′,k)t=t′

−
λ

8
F̃ (t, t,x = 0)2 +

m2
b

2
ϕ̄2(t) +

λ

24
ϕ̄4(t) + δT 00. (A.8)

We can rewrite this as

〈T 00(t)〉ren =
1

2
m2ϕ̄2(t) +

λ

24
ϕ̄4(t) −

λ

8
F 2

res
∫

k

(nk + 1/2)ω̃k(t) −
λ

8
F 2

vac + δT 00 −
λ

4
Fvac

(

Fres + ϕ̄2(t)
)

(A.9)

The first line has at most logarithmic divergences. The second line quartic, quadratic and

logarithmic. Let us assume that the particle number nk decays faster than k−4, in which

case the divergencies result only from

∫

k

ω̃k(t)

2
= F0 +

λ

4

(

ϕ̄2(t) − ϕ̄2
0 + Fres(t)

)

Fvac + O (logs) . (A.10)

The middle term almost precisely cancels the last term in (A.9), leaving only a divergent

constant. Therefore, by choosing

δT 00 =
λ

8
F 2

vac +
λ

4
ϕ̄2

0Fvac − F0, (A.11)

all the remaining quartic and quadratic divergences are cancelled.

Let us now consider what happens when including time derivatives of the mass. We

can consider this in the WKB approximation, in a similar way to the main text, but with

ω̃2
k = k2 + M2(t), M2 = m2

b +
λ

2

(

ϕ̄2 + Fvac + Fres(t)
)

. (A.12)
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The ansatz is

ϕk(t) = akfk(t) + a†kf∗
k(t), fk(t) =

1
√

2Ωk(t)
e−i

R t Ωk(t′)dt′ . (A.13)

As above, we find that

Ω2
k(t) = ω̃2

k(t)

[

1 −
1

2

ω̈k

ω3
k

+
3

4

(

ω̇k

ω2
k

)2
]

. (A.14)

with

(

ω̇k

ω2
k

)

Minkowski

=
MṀ

ω3
k

(

ω̈k

ω3
k

)

Minkowski

= . . . . (A.15)

We can compare this to the FRW case discussed above, where we have

ω̇k

ω2
k

= −
H

ωk

(

1 −
M2

ω2
k

)

. (A.16)

When we calculate the energy density, we have for instance

∫

k

∂t∂t′F (t, t′,x = 0)t=t′ =

∫

k

Ωk

2



1 +
1

4

(

Ω̇k

Ω2
k

)2




=

∫

k

ωk

2

(

1 −
1

4

ω̈k

ω3
k

+
5

8

(

ω̇

ω2
k

)2
)

. (A.17)

The leading term in time derivatives (no derivatives) is the usual quartically divergent

term. In the FRW case, the next order is of the form

∝

∫

k

H2 or Ḣ

ωk

, (A.18)

which is quadratically divergent. However, from the time derivative of the mass, we get

terms of the form

∝

∫

k

ωk

2

Ṁ2 or MM̈

ω4
k

, (A.19)

which are logarithmically divergent as well as finite terms, and in FRW we in addition get

mixed terms like

∝

∫

k

ωk

2

HMṀ

ω4
k

, (A.20)

which are also logarithmically divergent.

Therefore, since we choose to ignore logarithmic divergences in the energy, no coun-

terterms proportional to the derivative of the mass are necessary.
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